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Abstract
We study corrections to scaling in the O(3)- and O(4)-symmetric φ4 model on
the three-dimensional simple cubic lattice with nearest-neighbour interactions.
For this purpose, we use Monte Carlo simulations in connection with a finite-
size scaling method. We find that a finite value of the coupling λ∗ exists for both
values of N , where leading corrections to scaling vanish. As a first application,
we compute the critical exponents ν = 0.710(2) and η = 0.0380(10) forN = 3
and ν = 0.749(2) and η = 0.0365(10) for N = 4.

PACS numbers: 05.10.Ln, 05.50.+q, 64.60.-i

1. Introduction

At a second-order phase transition various quantities diverge with power laws. For example,
the magnetic susceptibility behaves as

χ ∼ C± |t |−γ (1)

where t = (T − Tc)/Tc is the reduced temperature. The subscripts + and − indicate the
high- and low-temperature phases, respectively. γ is the critical exponent of the magnetic
susceptibility.

The universality hypothesis says that for all systems within a given universality class the
exponent γ , as other critical exponents, takes exactly the same value. Note that the amplitudes
C± depend on the details of the system, while the ratio C+/C− is universal; i.e. it takes the
same value for all systems within a universality class. A universality class is characterized by
the spatial dimension of the system, the range of the interaction and the symmetry of the order
parameter (see [1]).
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Precise estimates of universal quantities, such as critical exponents and universal amplitude
ratios, obtained for theoretical models and experimental systems, are needed to test the
universality hypothesis.

One theoretical approach is the study of lattice spin models such as the Ising model.
In three dimensions, where no exact solution of these models is available, the most precise
results are obtained by the analysis of high-temperature series and Monte Carlo simulations.
For universal quantities, a similar accuracy can be obtained with field-theoretic methods such
as the ε-expansion or perturbation theory in three dimensions. For a detailed discussion see
textbooks on critical phenomena; for example, [2, 3].

Here we consider universality classes, which are characterized by O(N) symmetry and
short-range interactions for the cases N = 3 (Heisenberg universality class) and N = 4.

For this purpose, we study O(N)-invariant φ4 models on the simple cubic lattice. We
consider periodic boundary conditions. Here, the lattices have the linear extension L in all
three directions. The action is given by

S = −β
∑
〈xy〉

	φx · 	φy +
∑
x

	φ2
x + λ

∑
x

( 	φ2
x − 1)2 (2)

where 	φx ∈ R
N and 〈xy〉 denotes a pair of nearest-neighbour sites on the lattice. The action is

related to the classical Hamiltonian by S = βH , where β = 1/kBT . We study the canonical
ensemble; i.e. the partition function is given by

Z =
∫

D[φ] exp(−S) (3)

where
∫

D[φ] is shorthand for the N × L3 dimensional integral over all components of the
field at all lattice points. λ = 0 gives the exactly solvable Gaussian model. In the limit λ = ∞
the last term of the action forces the field to unit-length, 	φ2

x = 1; that is, the O(N)-invariant
nonlinear σ models are recovered. The O(3)-invariant nonlinear σ model is also called the
classical Heisenberg model. Along a critical line βc(λ), the model undergoes a second-order
phase transition. For all λ > 0, at given N , these transitions belong to the same universality
class.

In previous Monte Carlo studies of the Heisenberg [4–9] and the O(4) [9–11] universality
classes, O(N)-invariant nonlinear σ models have been studied. Mostly, the critical exponents
ν and η have been computed by finite-size scaling. To this end, the models have been simulated
at the critical temperature Tc for various system sizes L. For instance, the exponent η can then
be obtained by fitting the data for the magnetic susceptibility with the ansatz

χ |Tc ∼ c L2−η. (4)

The remaining exponents can then be inferred from scaling relations such as 2 − η = γ /ν.
While most of the results for the critical exponent ν of the correlation length are consistent

with each other and with the results of field-theoretic methods, there is a clear discrepancy in
the case of the exponent η. Most of the studies [5–8,10,11] have given η < 0.03 for N = 3 as
well asN = 4. (A detailed discussion of the numbers will be given in section 6.) These results
have to be compared, for example, with η = 0.0375(45) for N = 3 and η = 0.0360(40)
obtained from the ε-expansion [12].

The authors of [9] have argued that this discrepancy is due to corrections to scaling that
had been ignored in the analysis of the Monte Carlo data. In fact, taking into account leading
corrections

χ |Tc = c L2−η (1 + aL−ω + · · ·) (5)

where ω ≈ 0.8, they found η = 0.0413(16) for N = 3 and η = 0.0384(12) for N = 4. Here,
we try to clarify this situation and to corroborate the argument of [9]. However, we follow



Corrections to scaling in the 3D O(N)-symmetric φ4 model 8223

a more radical strategy to deal with corrections ∝L−ω: we eliminate them. To this end, we
make use of the parameter λ in the action (2). The critical exponents, including the correction
exponent ω, are the same for all values of λ > 0. However, in equation (5), the correction
amplitude a is a function of λ. Hence, there is a chance of finding a zero: a(λ∗) = 0. Note
that renormalization group theory predicts that λ∗ is unique for all quantities.

In [13,14] a finite-size scaling method has been proposed that allows us to compute λ∗ in a
systematic way. This method has been successfully implemented forN = 1 (Ising universality
class) [13–15] and N = 2 (XY universality class) [16, 17]. As a result, for these universality
classes, the most precise estimates for critical exponents from Monte Carlo simulations have
been obtained.

Furthermore, the results for λ∗ obtained from Monte Carlo have been used as input for the
analysis of high-temperature series [17–19]. As a result, the accuracy of the critical exponents
was further improved and, in addition, a large set of universal amplitude combinations has
been computed with unprecedented precision.

A priori, it is not clear whether this program can be extended to larger N . In fact, in [18]
it was argued that for N > 3 no such λ∗ exists for the action equation (2) on simple cubic
lattices. The argument is based on the large N expansion and the analysis of high-temperature
series expansions [20].

The paper is organized as follows. In section 2 we briefly review the finite-size scaling
method to eliminate leading corrections to scaling. The Monte Carlo algorithm, which is
a hybrid of the wall-cluster algorithm [14] and a local algorithm, is discussed in section 3.
Details of the simulations are given in section 4. In section 5 we analyse our Monte Carlo
data and give the results for λ∗ and the critical exponents ν and η. A major goal of this study
is to provide reliable error bars. Therefore, we discuss in detail how systematic errors due to
leading and sub-leading corrections are estimated. Next we compare our results for the critical
exponents with those given in the literature. Finally we give our conclusions.

2. The finite-size scaling method

2.1. Dimensionless ratios

Our method to locate λ∗ can be viewed as a generalization of Nightingale’s phenomenological
renormalization group [21] or Binder’s cumulant crossing method [22] to findβc and to compute
the renormalization group exponent yt = 1/ν. Therefore, we consider the same or similar
dimensionless ratios as Nightingale and Binder [21, 22]. Dimensionless ratios are invariant
under renormalization group transformations. The prototype of such a quantity is the so-called
Binder cumulant:

U4 = 〈( 	m2)2〉
〈 	m2〉2

(6)

where

	m = 1

V

∑
x

	φx (7)

is the magnetization of the system. Note that higher moments of the magnetization could also
be considered.

Frequently, the second moment correlation length divided by the linear extension of the
lattice ξ2nd/L has been studied. The second moment correlation length is defined by

ξ2nd =
√

χ/F − 1

4 sin(π/L)2
(8)
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where

χ = 1

V

〈( ∑
x

	φx
)2〉

(9)

is the magnetic susceptibility and

F = 1

V

〈∣∣∣∣ ∑
x

exp

(
i
2πx1

L

)
	φx

∣∣∣∣
2〉

(10)

is the Fourier transform of the two-point correlation function at the lowest non-vanishing
momentum. In order to reduce the statistical error, we averaged the results of all three directions
of the lattice. Note that Nightingale [21] studied ξ/L, where ξ is the exponential correlation
length of a system of the size LD−1 × ∞.

The third quantity that we study is the ratio Za/Zp of the partition function Za with
anti-periodic boundary conditions in one of the three directions andZp with periodic boundary
conditions in all directions. Anti-periodic boundary conditions mean that the term

∑
〈xy〉 	φx · 	φy

in the action is multiplied by −1 for x = (L1, x2, x3) and y = (1, x2, x3). This ratio can
be measured with the help of the boundary-flip algorithm, which is a version of the cluster
algorithm. The boundary-flip algorithm was introduced in [23] for the Ising model. In [24]
the authors have generalized this method to the case of O(N)-invariant nonlinear σ models.
As in [15] we use a version of the algorithm that only measures Za/Zp and does not perform
the flip to anti-periodic boundary conditions. For a recent discussion of the algorithm see [17].

2.2. Locating λ∗

Below we shall briefly recall the theoretical basis of the finite-size scaling method that has
been developed in [13–15] (see also [17]).

Let us denote a dimensionless ratio by R. We define a quantity R̄ based on a pair of
dimensionless ratios R1 and R2.

First we define βf as the value of β where, at given λ and L, R1 takes the fixed value R1,f :

R1(L, λ, βf) = R1,f . (11)

Hence βf is a function of L and λ. Note that in the language of high-energy physics, this is
our ‘renormalization condition’. Note that βf = βc + constL−1/ν + · · ·, where the constant
depends on the choice of R1,f .

Next we define

R̄(L, λ) ≡ R2(L, λ, βf). (12)

In the following we will frequently refer to R̄(L, λ) as ‘R2 at R1,f ’. The behaviour of R̄(L, λ)
can be inferred from renormalization group theory (for a detailed derivation see [17]):

R̄(L, λ) = R̄∗ + c̄(λ) L−ω + · · · . (13)

In this equation, eliminating leading corrections to scaling means finding the zero of c̄(λ). One
can imagine various numerical implementations to do this. Here we have followed the strategy
used in [15,16]. We have simulated the models close to the critical line for several values of λ
for various lattice sizes. The results are then fitted by equation (13). The function c̄(λ) is then
approximated by interpolation between the λ-values, where simulations have been performed.
In the following, we always use either Za/Zp or ξ2nd/L as R1 and U4 as R2. Note that in [15]
we have only used R1 = Za/Zp and in [16] only R1 = ξ2nd/L. Using both quantities gives us
better control over systematic errors.
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In order to estimate the systematic error of our result for λ∗, we need some knowledge of
the corrections that are hidden in the · · · of equation (13). In addition to the term ∝L−2ω there
are sub-leading corrections with ω′ > ω. While the value of ω ≈ 0.8 is well established (see,
for example, [12]), unfortunately the knowledge of ω′ is rather limited. Using the ‘scaling
field method’, which is a version of Wilson’s ‘exact renormalization group’, the authors of [25]
have found ω2 = 1.78(11) for N = 3. Following the figure given in [25] the value of ω2 for
N = 4 is similar to that of N = 3. In addition, there are corrections due to the breaking of the
rotational invariance by the lattice. These corrections have an ωrot ≈ 2 [26]. In the case of the
Binder cumulant and the second moment correlation length, we have to expect corrections due
to the analytic background of the magnetic susceptibility. This amounts to corrections with an
exponent ωback = 2 − η ≈ 2.

Since all ω′ are larger than or equal to 2ω, we shall assume corrections ∝L−1.6 when we
estimate systematic errors.

3. The Monte Carlo algorithm

In the last decade it has been demonstrated that O(N)-invariant nonlinear σ models can be
most efficiently simulated with cluster algorithms [28,29]. The advantage of cluster algorithms,
compared with local algorithms such as the Metropolis algorithm, is that critical slowing down
is almost completely eliminated. Hence, most of the recent Monte Carlo simulations ofO(N)-
invariant nonlinear σ models have been performed with a cluster algorithm. For example, the
single-cluster algorithm [29] was used in the simulations [5–10] of the Heisenberg model and
the O(4)-invariant nonlinear σ model in three dimensions.

In this study we have simulated the O(N)-invariant nonlinear σ models with the wall-
cluster algorithm [14]. For finite λ, following Brower and Tamayo [27], additional updates
with a local Metropolis algorithm were performed to allow fluctuations of the modulus of the
field 	φx . Below, we give the details of the wall-cluster algorithm, the local update and the
precise sequence of update steps.

3.1. The wall-cluster algorithm

Several variants of the cluster algorithm have been proposed in the literature. The best
known are the (original) Swendsen–Wang algorithm [28] and the single-cluster algorithm
of Wolff [29]. In all of these variants, the definition of a cluster is the same. Let us briefly
recall this definition in the example of the Ising model. A link between two nearest-neighbour
sites x and y is deleted with the probability

pd = min[1, exp(−2βsxsy)] (14)

where sx ∈ {−1, 1} is the spin at the site x. The links that are not deleted are frozen. A cluster
is a set of sites that is connected by frozen links. The variants of the cluster algorithm differ by
the selection of clusters that are flipped. To flip a cluster means to change the sign of the spins
within the cluster. In the Swendsen–Wang algorithm all clusters are explicitly constructed,
and a cluster is flipped with the probability of 1/2. In Wolff’s single-cluster algorithm, one
site of the lattice is randomly selected. Only the cluster that contains this site is flipped. For
this purpose, only this single cluster has to be constructed.

In the wall-cluster algorithm of [14] all clusters that intersect with an L2 plane (‘wall’)
of the lattice are flipped. Similar to the single-cluster algorithm, only those clusters that are
flipped have to be constructed.
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In [14], for the three-dimensional Ising model, a small gain in performance compared with
the single-cluster algorithm was found. In addition, the wall-cluster update can be combined
with the measurement of the ratio of partition functions Za/Zp.

In order to apply the wall-cluster algorithm, or any other cluster algorithm, discussed
above to the N -component φ4 theory, Ising variables are embedded into the model. This idea
goes back to Wolff [29]: in one step of the update, a unit vector 	u in R

N is selected. Only the
sign of the component of the field parallel to this unit vector is allowed to change. That is, if
we write φ(p)

x := 	u · 	φx as

φ(p)
x = sx |φ(p)

x | (15)

where sx ∈ {−1, 1}, only sx might change in the update. Ignoring constant terms, we arrive at
the action of the embedded Ising system:

Sembed = −
∑
〈xy〉

β〈xy〉sxsy (16)

with β〈xy〉 = β|φ(p)
x ||φ(p)

y |. Using equation (14) we get

pd = min[1, exp(−2β〈xy〉sxsy)] = min[1, exp(−2βφ(p)
x φ(p)

y )] (17)

for the N -component φ4 model.
In [29], for each update step, 	u is randomly chosen with a uniform probability distribution.

Here, we choose 	u = (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1) in a fixed sequence. This
simplifies the implementation of the cluster update and the measurement of Za/Zp. Also CPU
time is saved since in one update step only one component of the field has to be accessed. In
order to compensate for this restricted choice of 	u, we perform a global rotation of the field
after a certain number of cluster updates, where the rotation matrix is randomly selected. Note
that such a selection of 	u has already been used in [6, 30].

3.2. The local update of the φ4 model

We sweep through the lattice in typewriter fashion with a local Metropolis update.
A proposal for a new field at the site x is generated by

φ′(i)
x = φ(i)

x + c (r(i) − 0.5) (18)

where r(i) are random numbers that are uniformly distributed in [0, 1), i runs from 1 to N .
The proposal is accepted with the probability

A = min[1, exp(−S ′ + S)] (19)

where S ′ is the action of the proposed field φ′ and S is the action of the original field. The
step-size c is adjusted such that the acceptance rate is about 1/2. After this Metropolis step,
at the same site we perform an over-relaxation step:

	φ′
x = 	φx − 2

( 	φx · 	φn) 	φn
	φ2
n

(20)

where 	φn is the sum of nearest neighbours of 	φx . Note that this step takes very little CPU time;
hence it is likely that its benefit outbalances the CPU cost. Due to a lack of time, we did not
check this point carefully.
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3.3. The update cycle

Above we have discussed the building blocks of our update. These building blocks are
composed into a basic cycle:

• local update sweep (this step is omitted for the nonlinear σ models);
• global rotation of the field;
• 3 ×N wall-cluster updates.

The sequence of the 3 ×N wall-cluster updates is as follows. The wall is chosen in sequence
to be perpendicular to the 1-, 2- and 3-directions of the lattice. Each time, the position of the
wall is randomly selected. For each of the three directions of the wall, a wall-cluster update is
performed for the N choices (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1) of 	u.

4. The simulations

All our simulations were started with an ordered configuration. For equilibration, we discarded
the configurations that were generated by the first 105 update cycles (see section 3.3). Note
that 105 � τ , as we shall see below. After equilibration, we measured the observables after
each update cycle. In order to reduce the amount of data that is written to disk, during the
simulation we averaged the results of 5000 measurements. These averages were saved.

First we have simulated the O(3)-invariant nonlinear σ model at the best estimate of
βc = 0.693 002(12) of [9]. We used lattices of sizes L = 6, 8, 12, 16, 24, 32 and 48. We have
performed 25 × 106 measurements for L = 6–32 and 107 measurements for L = 48.

The N = 3 φ4 model was simulated at λ = 2.0, 4.5 and 5.0 on lattices of linear sizes
L = 6, 8, 12, 16, 24 and 32. For λ = 4.5 we simulated in addition L = 48. In all cases we
performed 107 measurements.

We have simulated the O(4)-invariant nonlinear σ model at the estimate of βc =
0.935 861(8) of [9]. We studied lattices of sizes L = 6, 8, 12, 16, 24, 32 and 48. We
have performed 25 × 106 measurements for L = 6–16, 2 × 107 measurements for L = 24,
14 × 106 measurements for L = 32, and 105 × 105 measurements for L = 48.

The N = 4 φ4 model was simulated at λ = 8.0, 12.0 and 14.0 on lattices of the linear
sizes L = 6, 8, 12, 16, 24 and 32. For λ = 12.0 we simulated in addition L = 48. As for
N = 3, we performed 107 measurements for each parameter set.

In the case of the φ4 model we have simulated at estimates of βf from Za/Zp,f , which
were obtained from smaller lattice sizes that have been simulated before and/or short test-
simulations.

For all our runs, we have determined the integrated auto-correlation time τint of the
magnetic susceptibility χ and

∑
〈xy〉 	φx · 	φy . For example, for the N = 3 φ4 model at λ = 4.5

we find that the integrated auto-correlation time of χ in units of cycles (see section 3.3) grows
from τint = 2.1 for L = 6 to about τint = 3.3 for L = 48. The integrated auto-correlation time
of

∑
〈xy〉 	φx · 	φy is larger than that of χ . It grows from τint = 2.6 for L = 6 to about τint = 5.1

for L = 48. Note that in the preprint version of [17] a detailed discussion is presented of the
auto-correlation times of the wall-cluster algorithm applied to the N = 2 φ4 model.

As a random number generator we have used our own implementation of G05CAF of the
NAG library. The G05CAF is a linear congruential random number generator with modulus
m = 259, multiplier a = 1313 and increment c = 0.

As a check of the correctness of the program and the quality of the random number
generator we have implemented the following two non-trivial relations among observables:

0 = 1
2β

∑
y·nn·x

〈 	φx 	φy〉 − 〈 	φ2
x〉 − 2λ 〈( 	φ2

x − 1) 	φ2
x〉 + N

2 (21)
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and

0 = β

〈( ∑
y·nn·x

[φ1
xφ

2
y − φ2

xφ
1
y ]

)2〉
− 2

N

∑
y·nn·x

〈 	φx 	φy〉 (22)

where y · nn · x indicates that the sum runs over the six nearest neighbours of x. In order to
enhance the statistics, we have summed equations (21) and (22) over all sites x. We found that
for all our simulations these equations are satisfied within the expected statistical errors.

Most of the simulations were performed on 450 MHz Pentium III PCs. For our largest
lattice size L = 48, one update cycle plus a measurement takes 0.67, 0.58, 0.86 and 0.75 s
for the N = 3 φ4 model at λ = 4.5, β = 0.686 22, the O(3)-invariant nonlinear σ model
at β = 0.693 002, the N = 4 φ4 model at λ = 12.0, β = 0.908 43 and the O(4)-invariant
nonlinear σ model at β = 0.935 861, respectively.

In total, the whole study took about two years on a single 450 MHz Pentium III CPU.

5. Analysis of the data

In our analysis the observables are needed as a function of β. Given the large statistics we
did not use the reweighting technique. Instead we used the Taylor expansion up to the third
order. The coefficients were obtained from the simulation. We have always checked that βf

are sufficiently close to β of the simulation such that the error from the truncation of the Taylor
series is well below the statistical error. Statistical errors are computed by a Jackknife analysis.

5.1. Corrections to scaling

In the first step of the analysis we have estimated ξ2nd/L
∗ and Za/Z

∗
p by fitting the O(3)- and

O(4)-invariant nonlinear σ model data with the ansatz

R(βc) = R∗ + c L−ω (23)

where βc, R∗ and c are the parameters of the fit. We have fixed ω = 0.8. As result we have
obtained Za/Z

∗
p ≈ 0.196 and ξ2nd/L ≈ 0.564 for the O(3) model and Za/Z

∗
p ≈ 0.1195

and ξ2nd/L
∗ ≈ 0.547 for the O(4) model. In the following we shall use these numbers to

set R1,f : i.e. Za/Zp,f = 0.196 and ξ2nd/Lf = 0.564 for N = 3 and Za/Zp,f = 0.1195 and
ξ2nd/Lf = 0.547 for N = 4.

Next we have analysed R̄ to study corrections to scaling. To obtain a first impression, we
have plotted our results for R̄ with Za/Zp,f for N = 3 in figure 1 and for N = 4 in figure 2.
In both cases the range 6 � L � 32 is shown.

Let us discuss the N = 3 case in detail. For the O(3)-symmetric nonlinear σ model, we
clearly see an increase of R̄ with increasing L over the whole range of lattice sizes. On the
other side, for λ = 2.0, R̄ decreases. For λ = 4.5 and 5.0 R̄ remains almost constant. This
behaviour suggests that leading corrections to scaling vanish at λ∗ ≈ 5. The behaviour of R̄
for N = 4 is qualitatively the same as for N = 3. Figure 2 indicates that λ∗ ≈ 13.

In the following numerical analysis of the data we demonstrate that the behaviour discussed
above is indeed due to leading corrections to scaling, and we give an accurate estimate of λ∗

and its error bar. For this purpose we fitted our data for R̄ with the ansatz

R̄ = R̄∗ + c̄(λ) L−ω (24)

with R̄∗, c̄(λ) for each value of λ and ω as free parameters. For N = 3 and 4, we have
performed such fits for three different sets of input data. These sets are given in table 1.

Our results for R̄∗ and ω for N = 3 are given in table 2.
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5 15 25
L

1.125

1.130

1.135

1.140

1.145

1.150

1.155

U
_4

  a
t  

Z
_a

/Z
_p

=
0.

19
6

O(3) 
corrections to scaling

lambda=2.0
lambda=4.5
lambda=5.0
lambda=infinite

Figure 1. N = 3. The Binder cumulant U at Za/Zp,f = 0.196 as a function of the lattice size L
for λ = 2.0, 4.5, 5.0 and ∞. The dotted curve is drawn only as a guide to the eye.

5 15 25
L

1.090

1.092

1.094

1.096

U
_4

  a
t  

Z
_a

/Z
_p

=
0.

11
95

O(4) 
corrections to scaling

lambda= 8.0
lambda=12.0
lambda=14.0
lambda=infinite

Figure 2. N = 4. The Binder cumulant U at Za/Zp,f = 0.1195 as a function of the lattice size L
for λ = 8.0, 12.0, 14.0 and ∞. The dotted curve is drawn only as a guide to the eye.

The values of c̄ from the same fits are summarized in table 3. First of all, we notice that
the results of our fit for ω are consistent with the estimates from field-theoretic methods (see
table 9). Given the statistical error and the variation of our result for ω with the different data
sets, we cannot provide a more accurate estimate for ω than the field-theoretic methods.

Having convinced ourselves that we really see leading corrections to scaling, we extract an
estimate for λ∗ from the data given in table 3. Therefore, we linearly extrapolate the results of c̄
atλ = 4.5 and 5.0. Taking the results from set 1 we arrive at the estimateλ∗ = 4.4(7), where the
results fromU4 atZa/Zp,f andU4 at ξ2nd/Lf are consistent. The error bar is computed from the
variation ofλ∗ with the data sets used for the fit. ForU4 atZa/Zp,f , λ∗ is roughly the same for all
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Table 1. The sets of input data for fits with equation (24). For N = 3 as well as 4 we have fitted
three different sets of input data. In columns one and two, the λ-values for N = 3 and 4 are given,
respectively. In columns three, four and five, the lattice sizes L that have been included in the fits
are listed.

λ, N = 3 λ, N = 4 Set 1 Set 2 Set 3

2.0 8.0 16, 24, 32 12, 16, 24 8, 12, 16
4.5 12.0 16, 24, 32, 48 12, 16, 24, 32 8, 12, 16, 24
5.0 14.0 16, 24, 32 12, 16, 24 8, 12, 16
∞ ∞ 16, 24, 32, 48 12, 16, 24, 32 8, 12, 16, 24

Table 2. Results for R̄∗ and ω for N = 3 from fits with the ansatz (24). The data sets that have
been used for the fits are given in table 1. The results for c̄ from the same fits are summarized in
table 3.

Set χ2/d.o.f. R̄∗ ω

U4 at Za/Zp,f

1 2.32 1.140 18(9) 0.743(23)
2 1.79 1.140 28(9) 0.749(18)
3 1.14 1.140 21(8) 0.799(13)

U4 at ξ2nd/L

1 2.16 1.139 77(10) 0.741(22)
2 0.90 1.140 00(11) 0.732(17)
3 4.06 1.140 38(10) 0.775(12)

Table 3. Results for c̄ for N = 3 from fits with the ansatz (24). The results for R̄∗ and ω are given
in table 2.

Set c̄(2.0) c̄(4.5) c̄(5.0) c̄(∞)

U4 at Za/Zp,f

1 0.0392(33) –0.0008(10) –0.0042(8) –0.0390(24)
2 0.0394(25) –0.0011(8) –0.0049(7) –0.0408(17)
3 0.0451(17) –0.0007(6) –0.0053(5) –0.0461(11)

U4 at ξ2nd/Lf

1 0.0464(37) –0.0007(11) –0.0056(9) –0.0464(26)
2 0.0436(27) –0.0026(8) –0.0074(7) –0.0475(18)
3 0.0452(18) –0.0064(6) –0.0115(5) –0.0566(12)

three sets. However, for U4 at ξ2nd/Lf , there is a drift to larger results for λ∗ as the lattice sizes
increase. Assuming a convergence proportionalL−ω′+ω ≈ L−0.8 we arrive at our error estimate.

In tables 4 and 5 we have summarized our results for R̄∗ and ω and c̄ for N = 4. As for
N = 3, we see that the values for ω are consistent with the field-theoretic results.

Clearly, the sign of c̄(∞) is negative and that of c̄(8.0) is positive. Hence a λ∗ exists
with c̄(λ∗) = 0. From linear interpolation of the result for λ = 12.0 and 14.0 we arrive at
λ∗ = 12.5(4.0). The error bar has been computed in the same way as for N = 3.

We have also used a slightly different approach to compute ω from the available data. We
have analysed the difference of R̄ at λ = 2.0 and λ = ∞. Obviously, R̄∗ is cancelled in this
way. Also, one might expect that corrections which are quadratic in the leading corrections
cancel since |c̄(2.0)| and |c̄(∞)| are almost the same. In addition, the analysis of numerical
data for N = 1 in [15] and N = 2 in [16] suggests that sub-leading corrections also cancel to



Corrections to scaling in the 3D O(N)-symmetric φ4 model 8231

Table 4. Results for R̄∗ and ω for N = 4 from fits with the ansatz (24). The data sets that have
been used for the fits are given in table 1. The results for c̄ from the same fits are summarized in
table 5.

Set χ2/d.o.f. R̄∗ ω

U4 at Za/Zp,f

1 0.75 1.094 41(6) 0.798(52)
2 0.84 1.094 50(7) 0.748(41)
3 2.07 1.094 66(6) 0.761(27)

U4 at ξ2nd/L

1 0.77 1.094 58(7) 0.761(50)
2 1.08 1.094 74(8) 0.735(37)
3 7.51 1.095 22(8) 0.761(25)

Table 5. Results for c̄ for N = 4 from fits with the ansatz (24). The results for R̄∗ and ω are given
in table 4.

Set c̄(8.0) c̄(12.0) c̄(14.0) c̄(∞)

U4 at Za/Zp,f

1 0.0091(19) 0.0010(8) −0.0023(7) −0.0160(22)
2 0.0073(12) −0.0001(6) −0.0021(5) −0.0145(14)
3 0.0061(7) −0.0013(4) −0.0033(3) −0.0165(8)

U4 at ξ2nd/Lf

1 0.0083(18) 0.0011(8) −0.0035(6) −0.0183(23)
2 0.0065(12) −0.0017(6) −0.0040(5) −0.0184(15)
3 0.0030(7) −0.0059(4) −0.0080(3) −0.0239(10)

Table 6. Results for ω for N = 3 and 4 obtained by fitting with ansatz (25). In the first column we
give N and the dimensionless ratio that has been used to determine βf . In the fit all lattice sizes
with Lmin � L � Lmax have been taken into account.

Lmin Lmax χ2/d.o.f. ω

N = 3, U4 at Za/Zp = 0.196 6 32 1.67 0.796(7)
8 32 0.73 0.781(10)

N = 3, U4 at ξ2/L = 0.564 6 32 0.65 0.769(6)
8 32 0.65 0.766(9)

N = 4, U4 at Za/Zp = 0.1195 6 32 0.54 0.780(15)
8 32 0.40 0.765(22)

N = 4, U4 at ξ2/L = 0.547 6 32 0.40 0.774(14)
8 32 0.38 0.764(20)

a large extent. Therefore, we have fitted our data with the ansatz

R̄(L, λ)|λ=2.0 − R̄(L, λ)|λ=∞ = 2c̄ L−ω. (25)

Our results for N = 3 and the corresponding results for N = 4 are given in table 6. In the
case of N = 4 we have taken the difference of R̄ at λ = 8.0 and λ = ∞.

First we notice that χ2/d.o.f. ≈ 1 is already reached for Lmin = 6. For such a small
Lmin, fits with ansatz (24) produce χ2/d.o.f. = 2.8 for N = 3, U4 at Za/Zp = 0.196 and
χ2/d.o.f. = 13.3 forN = 3, U4 at ξ2/L = 0.564. This fact indicates that the above-mentioned
cancellations indeed occur.
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Table 7. Results for ν from fits with the ansatz (26). The range of lattice sizes is always Lmin = 16
and Lmax = 32. We have used six different combinations of R. These are given by: C1, the slope
of U4 at Za/Zp,f ; C2, the slope of Za/Zp at Za/Zp,f ; C3, the slope of ξ2nd/L at Za/Zp,f ; C4, the
slope of U4 at ξ2nd/Lf ; C5, the slope of Za/Zp at ξ2nd/Lf ; C6, the slope of ξ2nd/L at ξ2nd/Lf .

λ C1 C2 C3 C4 C5 C6

2.0 0.7164(23) 0.7088(10) 0.7136(13) 0.7181(24) 0.7106(12) 0.7135(12)
4.5 0.7071(21) 0.7083(9) 0.7115(12) 0.7074(21) 0.7086(10) 0.7115(12)
5.0 0.7078(21) 0.7085(9) 0.7114(11) 0.7071(21) 0.7077(10) 0.7114(11)
∞ 0.7076(12) 0.7127(5) 0.7142(6) 0.7056(12) 0.7136(13) 0.7141(6)

The results for ω are consistent with those of the field-theoretic methods. Certainly our
approach is very promising to give competitive results for the correction exponentω. However,
we would like to have still larger statistics and a larger range of lattice sizes to give a sensible
estimate of the systematic error caused by sub-leading corrections.

5.2. Critical exponents

We have computed the critical exponents ν and η using well-established finite-size scaling
methods. Below we shall only discuss in detail the results for N = 3. The analysis for N = 4
has been performed analogously.

The exponent ν is computed from the slope of a dimensionless ratio R at βf (see
equation (11)):

∂R

∂β

∣∣∣∣
βf

= a L1/ν . (26)

As was pointed out in [9], replacing βc by βf simplifies the error analysis, since the error in βc

does not need to be propagated.
In our study we have considered three different choices of R. Hence, in equation (26)

we could in principle consider nine different combinations. Below we shall restrict ourselves
to six choices: βf is fixed either by Za/Zp,f or ξ2nd/Lf . We consider the slope of all three
dimensionless ratios R.

First we would like to study how much the result of ν from fits with equation (26) depends
on leading corrections to scaling. For this purpose, for Lmin = 16 and Lmax = 32, we have
fitted our data for all available values of λ for all six combinations of R. The results of these
fits are summarized in table 7.

The variation of the results with λ are rather small. We find the largest variation for the
combination C1, where we obtain ν = 0.7164(23) for λ = 2.0 and ν = 0.7076(12) for
λ = ∞. Hence, we expect that for λ = 4.5 the effect of corrections to scaling should be
smaller than 0.0001.

Next, let us discuss in more detail the results for λ = 4.5 which is closest to our estimate
of λ∗. The results from fits with ansatz (26) are summarized in table 8. We see that the results
approach each other as Lmin is increased. For the slope of U4, the results for ν remain almost
constant as Lmin is varied. For the slope of Za/Zp we see a slight increase of the estimate of ν.
On the other hand, for the slope of ξ2nd/L, we see a decrease. Assuming that this behaviour is
caused by the sub-leading corrections, we conclude that ν = 0.7120 from ξ2nd/L is an upper
bound. Given the larger stability of the estimate from Za/Zp, we take ν = 0.710(2) as our
final estimate.
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Table 8. Results for ν from fits with ansatz (26) for N = 3 at λ = 4.5; always Lmax = 48. The
combinations C1, . . . ,C6 are explained in the caption of table 7.

Lmin C1 C2 C3 C4 C5 C6

8 0.7113(7) 0.7087(3) 0.7150(4) 0.7102(7) 0.7075(3) 0.7150(4)
12 0.7111(10) 0.7100(4) 0.7132(5) 0.7107(10) 0.7096(5) 0.7132(5)
16 0.7101(13) 0.7099(6) 0.7120(7) 0.7102(14) 0.7100(7) 0.7120(7)

Table 9. Results for the critical exponents of the O(3) universality class from various methods.

Method Reference ν η ω

IMC Present work 0.710(2) 0.0380(10) 0.773
MC [9] 0.7128(14) 0.0413(15)(1) 0.78(2)
MC [8] 0.642(2) 0.020(1) —
MC [7] 0.704(6) 0.027(2) —
MC [5] 0.704(6) 0.028(2) —
MC [4] 0.706(9) 0.031(7) —
MC [6] 0.7036(23) 0.0250(35) —
HT [31] 0.715(3) 0.036(10)a —
d = 3 PT [12] 0.7073(35) 0.0355(25) 0.782(13)
ε-expansion [12] 0.7045(55) 0.0375(45) 0.794(18)

a This number for η is computed from γ = 1.404(4) and ν = 0.715(3) given in the reference; the
details are discussed in the text.

Next we compute the exponent η from the finite-size behaviour of the magnetic
susceptibility

χ |βf = c L2−η. (27)

We restrict the discussion to Za/Zp,f since fixing βf by ξ2nd/Lf gives very similar numbers.
For the estimate of η we see a much stronger dependence on λ than for ν. Fitting

with ansatz (27) and Lmin = 16, Lmax = 32 we obtain η = 0.039 82(33), 0.036 14(30),
0.035 41(31) and 0.032 69(18) for λ = 2.0, 4.5, 5.0 and ∞, respectively.

Fitting the data at λ = 4.5 with Lmax = 48 yields η = 0.035 81(14), 0.036 68(19) and
0.037 36(32) for Lmin = 12, 16 and 24, respectively. For Lmin = 12 we get χ2/d.o.f. = 18.5.
The strong dependence of the result on Lmin and the large χ2/d.o.f. at Lmin = 12 indicates
that there are sizeable sub-leading corrections.

Fitting with an ansatz that includes an analytic background term

χ |βf = c L2−η + b (28)

yields χ2/d.o.f. = 0.38 already for Lmin = 8. The results are η = 0.0384(2), 0.0386(4) and
0.0381(6) for Lmin = 8, 12 and 16, respectively. To see the effect of leading corrections on
this fit we have in addition fitted the data for λ = 5.0 with Lmin = 8 and Lmax = 32; we get
η = 0.0378(4).

As our final estimate we quote η = 0.0380(10). The error bar takes into account statistical
errors as well systematic errors due to leading and sub-leading corrections. These errors are
estimated from the spread of the results of the various fits discussed above.

With a similar analysis we arrive at ν = 0.749(2) and η = 0.0365(10) for the O(4)
universality class.
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Table 10. Results for the critical exponents of the O(4) universality class from various methods.

Method Reference ν η ω

IMC Present work 0.749(2) 0.0365(10) 0.765
MC [11] 0.739(2)a 0.024(2)a —
MC [9] 0.7525(10) 0.0384(12) 1.8(2)
MC [10] 0.7479(90) 0.0254(38) —
HT [31] 0.750(3) 0.035(9)b —
d = 3 PT [12] 0.741(6) 0.0350(45) 0.774(20)
ε-expansion [12] 0.737(8) 0.0360(40) 0.795(30)

a These numbers for ν and η are computed from δ = 4.86(1) and β = 0.3785(6) that are given in
the reference; the details are discussed in the text.
b This number for η is computed from γ = 1.474(4) and ν = 0.750(3) that are given in the
reference; the details are discussed in the text.

6. Comparison with results from the literature

Here we would like to compare our results for the critical exponents ν and η with previous
Monte Carlo studies of the O(3)- and O(4)-invariant nonlinear σ models. In addition we give
selected results from high-temperature series, perturbation theory in three dimensions, and the
ε-expansion. The results are summarized in tables 9 and 10 for N = 3 and 4, respectively.
For more references on field-theoretic methods and other methods not discussed here, see for
example [12].

All Monte Carlo studies listed in tables 9 and 10 use a simple cubic lattice. In addition,
in [6] the body centred cubic lattice is studied. (In table 9 we only give the simple cubic
results.) All studies except [11] use finite-size scaling to determine critical exponents. In all
finite-size scaling studies, the lattice sizes are smaller or equal toL = 48, except for [9], where
in addition L = 64 is simulated. The results of the Monte Carlo (MC) studies cited above
are extracted from ansatz-like equations (26) and (27) (mostly βc is used instead of βf ). We
see that almost all Monte Carlo results for ν are consistent with ours. On the other hand, the
results for η are systematically too small, except for [9].

This behaviour can be well understood with our results of section 5.2. The estimates for η
from the ansatz (27) are clearly affected by corrections to scaling. Our results from the O(3)-
and O(4)-invariant nonlinear σ models for η are systematically lower than our final results
from the φ4 models at λ∗. On the other hand, the results for ν given in table 7 show only little
variation with λ; i.e. little dependence on leading corrections to scaling.

The authors of [9], who for the first time tried to take into account leading corrections
to scaling in the analysis of their data, arrive at rather similar conclusions as to how leading
corrections to scaling affect the estimates of η and ν. They extrapolated their results for η
assuming L−ω corrections.

However from our analysis of section 5.2 we know that the estimates of η obtained from
lattices with L � 48 are also strongly affected by sub-leading corrections with ω′ ≈ 2.

Hence, extrapolating only in L−ω leads to a wrong amplitude for the L−ω corrections. As
a result, the final estimate of [9] for η is too large compared with our result.

The authors of [11] determine on lattices of a size up to 1203 the magnetization m in the
thermodynamic limit. They estimate the critical exponents β and δ by fitting their data with
the ansatz

m(t, 0) ∼ tβ m(0, h) ∼ h1/δ. (29)

We have converted their results by using the scaling relations ν = β/(d − yh) and
η = d + 2 − 2yh, where yh = δd/(1 + δ) and d = 3 is the dimension. As one can see
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from table 10 there is a clear discrepancy with our numbers for η as well as ν; i.e. ignoring
corrections to scaling in equations (29) leads to similar problems as in finite-size scaling.

There are a large number of references on the ε-expansion and the perturbative expansion
in three dimensions in the literature. As an example, we have chosen the result of a recent
analysis by Guida and Zinn-Justin [12]. We notice that these results are consistent with ours
for η and ν within the quoted errors. Also, we note that the error bars of our estimates for ν
and η are smaller than those of the field-theoretic estimates.

There are also a number of publications on the analysis of high-temperature series. In
the tables we give the results of a recent analysis [31] using inhomogeneous differential
approximants. The coefficients of the high-temperature series of χ and µ2 are computed
up to β21. In our tables, we only give the results from the unbiased analysis of the simple cubic
lattice series. In addition, the authors analyse the body centred cubic lattice. The authors also
give results obtained from a so-called θ -biased analysis, where they make use of the numerical
results for θ = ων obtained from field-theoretic methods. It is interesting to note that these
biased results (not given in our tables) tend to be less consistent with our results than the
unbiased results which we quote in tables 9 and 10.

In tables 9 and 10, for ω we give the average of the result from Za/Zp,f and ξ2nd/Lf with
Lmin = 8 taken from table 6. We make no attempt to estimate the systematic errors due to sub-
leading corrections. Certainly these errors are larger than those quoted for the field-theoretic
estimates of [12]. It is however interesting to note that our results are consistent with those
of [12].

Also, the Monte Carlo result of [9] for N = 3 is consistent with ours. However we cannot
confirm their surprising result for N = 4.

7. Conclusions

In this study we have demonstrated that the program of [13,14] to eliminate leading corrections
to scaling in the three-dimensional φ4 model can be extended to N = 3 and 4. In particular,
we have found λ∗ = 4.4(7) for N = 3 and λ∗ = 12.5(4.0) for N = 4. Based on these results,
we have computed the critical exponents ν and η from finite-size scaling. In particular, for η,
the error bar could be reduced considerably compared with previous Monte Carlo simulations
or field-theoretic methods and the analysis of high-temperature series.

Since the CPU time used for the present study is still moderate, further progress can be
made just by enlarging the statistics and simulating larger lattices.

Also, our results for λ∗ can be used as input for the analysis of high-temperature series
analogous to [18, 19].

The principal question raised in [18], whether the program to eliminate leading corrections
is restricted to N < Nc, where Nc is finite, remains open.
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